Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}-6x^{3}+9x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -6x^{3}\mathrm{d}x+\int 9x^{2}\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-6\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-6\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{3x^{4}}{2}+9\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -6 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{3x^{4}}{2}+3x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 9 times \frac{x^{3}}{3}.
\frac{3^{5}}{5}-\frac{3}{2}\times 3^{4}+3\times 3^{3}-\left(\frac{0^{5}}{5}-\frac{3}{2}\times 0^{4}+3\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{81}{10}
Simplify.