Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}2.4x+2.4x^{2}+0.6x^{3}\mathrm{d}x
Use the distributive property to multiply 2.4+2.4x+0.6x^{2} by x.
\int \frac{12x+12x^{2}+3x^{3}}{5}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{12x}{5}\mathrm{d}x+\int \frac{12x^{2}}{5}\mathrm{d}x+\int \frac{3x^{3}}{5}\mathrm{d}x
Integrate the sum term by term.
\frac{12\int x\mathrm{d}x+12\int x^{2}\mathrm{d}x+3\int x^{3}\mathrm{d}x}{5}
Factor out the constant in each of the terms.
\frac{6x^{2}+12\int x^{2}\mathrm{d}x+3\int x^{3}\mathrm{d}x}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2.4 times \frac{x^{2}}{2}.
\frac{6x^{2}+4x^{3}+3\int x^{3}\mathrm{d}x}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2.4 times \frac{x^{3}}{3}.
\frac{6x^{2}}{5}+\frac{4x^{3}}{5}+\frac{3x^{4}}{20}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 0.6 times \frac{x^{4}}{4}.
\frac{6}{5}\times 2^{2}+\frac{4}{5}\times 2^{3}+\frac{3}{20}\times 2^{4}-\left(\frac{6}{5}\times 0^{2}+\frac{4}{5}\times 0^{3}+\frac{3}{20}\times 0^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{68}{5}
Simplify.