Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}-6x^{2}+12x+3x^{2}-6x\mathrm{d}x
To find the opposite of -3x^{2}+6x, find the opposite of each term.
\int _{0}^{2}-3x^{2}+12x-6x\mathrm{d}x
Combine -6x^{2} and 3x^{2} to get -3x^{2}.
\int _{0}^{2}-3x^{2}+6x\mathrm{d}x
Combine 12x and -6x to get 6x.
\int -3x^{2}+6x\mathrm{d}x
Evaluate the indefinite integral first.
\int -3x^{2}\mathrm{d}x+\int 6x\mathrm{d}x
Integrate the sum term by term.
-3\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x
Factor out the constant in each of the terms.
-x^{3}+6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3 times \frac{x^{3}}{3}.
-x^{3}+3x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 6 times \frac{x^{2}}{2}.
-2^{3}+3\times 2^{2}-\left(-0^{3}+3\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
4
Simplify.