Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. θ
Tick mark Image

Similar Problems from Web Search

Share

\int R^{2}\sin(\theta )\mathrm{d}R
Evaluate the indefinite integral first.
\sin(\theta )\int R^{2}\mathrm{d}R
Factor out the constant using \int af\left(R\right)\mathrm{d}R=a\int f\left(R\right)\mathrm{d}R.
\sin(\theta )\times \frac{R^{3}}{3}
Since \int R^{k}\mathrm{d}R=\frac{R^{k+1}}{k+1} for k\neq -1, replace \int R^{2}\mathrm{d}R with \frac{R^{3}}{3}.
\frac{\sin(\theta )R^{3}}{3}
Simplify.
\frac{1}{3}\sin(\theta )\times 2^{3}-\frac{1}{3}\sin(\theta )\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{8\sin(\theta )}{3}
Simplify.