Evaluate
\frac{8\sin(\theta )}{3}
Differentiate w.r.t. θ
\frac{8\cos(\theta )}{3}
Share
Copied to clipboard
\int R^{2}\sin(\theta )\mathrm{d}R
Evaluate the indefinite integral first.
\sin(\theta )\int R^{2}\mathrm{d}R
Factor out the constant using \int af\left(R\right)\mathrm{d}R=a\int f\left(R\right)\mathrm{d}R.
\sin(\theta )\times \frac{R^{3}}{3}
Since \int R^{k}\mathrm{d}R=\frac{R^{k+1}}{k+1} for k\neq -1, replace \int R^{2}\mathrm{d}R with \frac{R^{3}}{3}.
\frac{\sin(\theta )R^{3}}{3}
Simplify.
\frac{1}{3}\sin(\theta )\times 2^{3}-\frac{1}{3}\sin(\theta )\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{8\sin(\theta )}{3}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}