Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}\frac{9}{4}x^{2}-12x+16\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}x-4\right)^{2}.
\int \frac{9x^{2}}{4}-12x+16\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{9x^{2}}{4}\mathrm{d}x+\int -12x\mathrm{d}x+\int 16\mathrm{d}x
Integrate the sum term by term.
\frac{9\int x^{2}\mathrm{d}x}{4}-12\int x\mathrm{d}x+\int 16\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{3}}{4}-12\int x\mathrm{d}x+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply \frac{9}{4} times \frac{x^{3}}{3}.
\frac{3x^{3}}{4}-6x^{2}+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -12 times \frac{x^{2}}{2}.
\frac{3x^{3}}{4}-6x^{2}+16x
Find the integral of 16 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3}{4}\times 2^{3}-6\times 2^{2}+16\times 2-\left(\frac{3}{4}\times 0^{3}-6\times 0^{2}+16\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
14
Simplify.