Skip to main content
Evaluate
Tick mark Image

Share

\int _{0}^{2}\frac{6x}{\sqrt{3}\sqrt{2}}\mathrm{d}x
Multiply 2 and 3 to get 6.
\int _{0}^{2}\frac{6x}{\sqrt{6}}\mathrm{d}x
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\int _{0}^{2}\frac{6x\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\mathrm{d}x
Rationalize the denominator of \frac{6x}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\int _{0}^{2}\frac{6x\sqrt{6}}{6}\mathrm{d}x
The square of \sqrt{6} is 6.
\int _{0}^{2}x\sqrt{6}\mathrm{d}x
Cancel out 6 and 6.
\int x\sqrt{6}\mathrm{d}x
Evaluate the indefinite integral first.
\sqrt{6}\int x\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\sqrt{6}\times \frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{\sqrt{6}x^{2}}{2}
Simplify.
\frac{1}{2}\times 6^{\frac{1}{2}}\times 2^{2}-\frac{1}{2}\times 6^{\frac{1}{2}}\times 0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2\sqrt{6}
Simplify.