Evaluate
190
Share
Copied to clipboard
\int \frac{3x^{2}}{10}-\frac{39x}{5}+48\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{3x^{2}}{10}\mathrm{d}x+\int -\frac{39x}{5}\mathrm{d}x+\int 48\mathrm{d}x
Integrate the sum term by term.
\frac{3\int x^{2}\mathrm{d}x}{10}-\frac{39\int x\mathrm{d}x}{5}+\int 48\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{10}-\frac{39\int x\mathrm{d}x}{5}+\int 48\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 0.3 times \frac{x^{3}}{3}.
\frac{x^{3}}{10}-\frac{39x^{2}}{10}+\int 48\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -7.8 times \frac{x^{2}}{2}.
\frac{x^{3}}{10}-\frac{39x^{2}}{10}+48x
Find the integral of 48 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{10^{3}}{10}-\frac{39}{10}\times 10^{2}+48\times 10-\left(\frac{0^{3}}{10}-\frac{39}{10}\times 0^{2}+48\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
190
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}