Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}x\left(-1-x^{3}\right)\mathrm{d}x
Subtract 3 from 2 to get -1.
\int _{0}^{1}-x-x^{4}\mathrm{d}x
Use the distributive property to multiply x by -1-x^{3}.
\int -x-x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int -x\mathrm{d}x+\int -x^{4}\mathrm{d}x
Integrate the sum term by term.
-\int x\mathrm{d}x-\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{2}}{2}-\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
-\frac{x^{2}}{2}-\frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -1 times \frac{x^{5}}{5}.
-\frac{1^{2}}{2}-\frac{1^{5}}{5}-\left(-\frac{0^{2}}{2}-\frac{0^{5}}{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{7}{10}
Simplify.