Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{e^{x}-e^{x}}{2}\right)^{14}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 3 and 11 to get 14.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{0}{2}\right)^{14}\mathrm{d}x
Combine e^{x} and -e^{x} to get 0.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0^{14}\mathrm{d}x
Zero divided by any non-zero number gives zero.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0\mathrm{d}x
Calculate 0 to the power of 14 and get 0.
\int 0\mathrm{d}x
Evaluate the indefinite integral first.
0
Find the integral of 0 using the table of common integrals rule \int a\mathrm{d}x=ax.
0+0
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
0
Simplify.