Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 3x^{3}+x-4\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{3}\mathrm{d}x+\int x\mathrm{d}x+\int -4\mathrm{d}x
Integrate the sum term by term.
3\int x^{3}\mathrm{d}x+\int x\mathrm{d}x+\int -4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{4}}{4}+\int x\mathrm{d}x+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 3 times \frac{x^{4}}{4}.
\frac{3x^{4}}{4}+\frac{x^{2}}{2}+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{3x^{4}}{4}+\frac{x^{2}}{2}-4x
Find the integral of -4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3}{4}\times 3^{4}+\frac{3^{2}}{2}-4\times 3-\left(\frac{3}{4}\left(-5\right)^{4}+\frac{\left(-5\right)^{2}}{2}-4\left(-5\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-448
Simplify.