Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-4}^{4}16-x^{2}\mathrm{d}x
Calculate \sqrt{16-x^{2}} to the power of 2 and get 16-x^{2}.
\int 16-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 16\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 16\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
16x-\int x^{2}\mathrm{d}x
Find the integral of 16 using the table of common integrals rule \int a\mathrm{d}x=ax.
16x-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
16\times 4-\frac{4^{3}}{3}-\left(16\left(-4\right)-\frac{\left(-4\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{256}{3}
Simplify.