Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 16-8x^{2}-x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int 16\mathrm{d}x+\int -8x^{2}\mathrm{d}x+\int -x^{4}\mathrm{d}x
Integrate the sum term by term.
\int 16\mathrm{d}x-8\int x^{2}\mathrm{d}x-\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
16x-8\int x^{2}\mathrm{d}x-\int x^{4}\mathrm{d}x
Find the integral of 16 using the table of common integrals rule \int a\mathrm{d}x=ax.
16x-\frac{8x^{3}}{3}-\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -8 times \frac{x^{3}}{3}.
16x-\frac{8x^{3}}{3}-\frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -1 times \frac{x^{5}}{5}.
16\times 2-\frac{8}{3}\times 2^{3}-\frac{2^{5}}{5}-\left(16\left(-2\right)-\frac{8}{3}\left(-2\right)^{3}-\frac{\left(-2\right)^{5}}{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{128}{15}
Simplify.