Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 3x^{2}+5x-1\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{2}\mathrm{d}x+\int 5x\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
3\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x+\int -1\mathrm{d}x
Factor out the constant in each of the terms.
x^{3}+5\int x\mathrm{d}x+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
x^{3}+\frac{5x^{2}}{2}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
x^{3}+\frac{5x^{2}}{2}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
1^{3}+\frac{5}{2}\times 1^{2}-1-\left(\left(-2\right)^{3}+\frac{5}{2}\left(-2\right)^{2}-\left(-2\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{3}{2}
Simplify.