Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -y^{2}-1\mathrm{d}y
Evaluate the indefinite integral first.
\int -y^{2}\mathrm{d}y+\int -1\mathrm{d}y
Integrate the sum term by term.
-\int y^{2}\mathrm{d}y+\int -1\mathrm{d}y
Factor out the constant in each of the terms.
-\frac{y^{3}}{3}+\int -1\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -1 times \frac{y^{3}}{3}.
-\frac{y^{3}}{3}-y
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}y=ay.
-\frac{1^{3}}{3}-1-\left(-\frac{\left(-1\right)^{3}}{3}-\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{8}{3}
Simplify.