\int{ 3 \cos ( \theta ) +3 \sqrt[ ]{ \theta } }d \theta
Evaluate
3\sin(\theta )+2\theta ^{\frac{3}{2}}+С
Differentiate w.r.t. θ
3\left(\cos(\theta )+\sqrt{\theta }\right)
Share
Copied to clipboard
\int 3\cos(\theta )\mathrm{d}\theta +\int 3\sqrt{\theta }\mathrm{d}\theta
Integrate the sum term by term.
3\left(\int \cos(\theta )\mathrm{d}\theta +\int \sqrt{\theta }\mathrm{d}\theta \right)
Factor out the constant in each of the terms.
3\left(\sin(\theta )+\int \sqrt{\theta }\mathrm{d}\theta \right)
Use \int \cos(\theta )\mathrm{d}\theta =\sin(\theta ) from the table of common integrals to obtain the result.
3\sin(\theta )+2\theta ^{\frac{3}{2}}
Rewrite \sqrt{\theta } as \theta ^{\frac{1}{2}}. Since \int \theta ^{k}\mathrm{d}\theta =\frac{\theta ^{k+1}}{k+1} for k\neq -1, replace \int \theta ^{\frac{1}{2}}\mathrm{d}\theta with \frac{\theta ^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply 3 times \frac{2\theta ^{\frac{3}{2}}}{3}.
3\sin(\theta )+2\theta ^{\frac{3}{2}}+С
If F\left(\theta \right) is an antiderivative of f\left(\theta \right), then the set of all antiderivatives of f\left(\theta \right) is given by F\left(\theta \right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}