Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{\frac{2}{3}}\mathrm{d}x+\int \frac{4}{x^{4}}\mathrm{d}x+\int \frac{3}{x^{5}}\mathrm{d}x
Integrate the sum term by term.
2\int x^{\frac{2}{3}}\mathrm{d}x+4\int \frac{1}{x^{4}}\mathrm{d}x+3\int \frac{1}{x^{5}}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{6x^{\frac{5}{3}}}{5}+4\int \frac{1}{x^{4}}\mathrm{d}x+3\int \frac{1}{x^{5}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{2}{3}}\mathrm{d}x with \frac{3x^{\frac{5}{3}}}{5}. Multiply 2 times \frac{3x^{\frac{5}{3}}}{5}.
\frac{6x^{\frac{5}{3}}}{5}-\frac{\frac{4}{x^{3}}}{3}+3\int \frac{1}{x^{5}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{4}}\mathrm{d}x with -\frac{1}{3x^{3}}. Multiply 4 times -\frac{1}{3x^{3}}.
\frac{6x^{\frac{5}{3}}}{5}-\frac{\frac{4}{x^{3}}}{3}-\frac{\frac{3}{x^{4}}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{5}}\mathrm{d}x with -\frac{1}{4x^{4}}. Multiply 3 times -\frac{1}{4x^{4}}.
\frac{6x^{\frac{5}{3}}}{5}+\frac{-\frac{3}{4}-\frac{4x}{3}}{x^{4}}
Simplify.
\frac{6x^{\frac{5}{3}}}{5}+\frac{-\frac{3}{4}-\frac{4x}{3}}{x^{4}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.