Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{7}\mathrm{d}x+\int 4x\mathrm{d}x+\int -9\mathrm{d}x
Integrate the sum term by term.
2\int x^{7}\mathrm{d}x+4\int x\mathrm{d}x+\int -9\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{8}}{4}+4\int x\mathrm{d}x+\int -9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}. Multiply 2 times \frac{x^{8}}{8}.
\frac{x^{8}}{4}+2x^{2}+\int -9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
\frac{x^{8}}{4}+2x^{2}-9x
Find the integral of -9 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{8}}{4}+2x^{2}-9x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.