Evaluate
\frac{4t^{10}}{5}-6t^{8}+16t^{6}-16t^{4}+С
Differentiate w.r.t. t
8\left(t\left(t^{2}-2\right)\right)^{3}
Share
Copied to clipboard
\int 8\left(t^{3}\right)^{3}-48\left(t^{3}\right)^{2}t+96t^{3}t^{2}-64t^{3}\mathrm{d}t
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2t^{3}-4t\right)^{3}.
\int 8t^{9}-48\left(t^{3}\right)^{2}t+96t^{3}t^{2}-64t^{3}\mathrm{d}t
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\int 8t^{9}-48t^{6}t+96t^{3}t^{2}-64t^{3}\mathrm{d}t
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int 8t^{9}-48t^{7}+96t^{3}t^{2}-64t^{3}\mathrm{d}t
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
\int 8t^{9}-48t^{7}+96t^{5}-64t^{3}\mathrm{d}t
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\int 8t^{9}\mathrm{d}t+\int -48t^{7}\mathrm{d}t+\int 96t^{5}\mathrm{d}t+\int -64t^{3}\mathrm{d}t
Integrate the sum term by term.
8\int t^{9}\mathrm{d}t-48\int t^{7}\mathrm{d}t+96\int t^{5}\mathrm{d}t-64\int t^{3}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{4t^{10}}{5}-48\int t^{7}\mathrm{d}t+96\int t^{5}\mathrm{d}t-64\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{9}\mathrm{d}t with \frac{t^{10}}{10}. Multiply 8 times \frac{t^{10}}{10}.
\frac{4t^{10}}{5}-6t^{8}+96\int t^{5}\mathrm{d}t-64\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{7}\mathrm{d}t with \frac{t^{8}}{8}. Multiply -48 times \frac{t^{8}}{8}.
\frac{4t^{10}}{5}-6t^{8}+16t^{6}-64\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{5}\mathrm{d}t with \frac{t^{6}}{6}. Multiply 96 times \frac{t^{6}}{6}.
\frac{4t^{10}}{5}-6t^{8}+16t^{6}-16t^{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply -64 times \frac{t^{4}}{4}.
-16t^{4}+16t^{6}-6t^{8}+\frac{4t^{10}}{5}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}