Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(\sqrt{x}\right)^{2}+\frac{4}{3}\sqrt{x}+\frac{4}{9}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x}+\frac{2}{3}\right)^{2}.
\int x+\frac{4}{3}\sqrt{x}+\frac{4}{9}\mathrm{d}x
Calculate \sqrt{x} to the power of 2 and get x.
\int x\mathrm{d}x+\int \frac{4\sqrt{x}}{3}\mathrm{d}x+\int \frac{4}{9}\mathrm{d}x
Integrate the sum term by term.
\int x\mathrm{d}x+\frac{4\int \sqrt{x}\mathrm{d}x}{3}+\int \frac{4}{9}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{2}}{2}+\frac{4\int \sqrt{x}\mathrm{d}x}{3}+\int \frac{4}{9}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{8x^{\frac{3}{2}}}{9}+\int \frac{4}{9}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply \frac{4}{3} times \frac{2x^{\frac{3}{2}}}{3}.
\frac{x^{2}}{2}+\frac{8x^{\frac{3}{2}}}{9}+\frac{4x}{9}
Find the integral of \frac{4}{9} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4x}{9}+\frac{8x^{\frac{3}{2}}}{9}+\frac{x^{2}}{2}
Simplify.
\frac{4x}{9}+\frac{8x^{\frac{3}{2}}}{9}+\frac{x^{2}}{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.