Solve for c
c=-\frac{\left(7x-2\right)^{4}}{28}+\frac{7x^{2}}{2}-2x+С
Share
Copied to clipboard
28\int 7x-2\mathrm{d}x=\left(7x-2\right)^{4}+28c
Multiply both sides of the equation by 28.
\left(7x-2\right)^{4}+28c=28\int 7x-2\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
28c=28\int 7x-2\mathrm{d}x-\left(7x-2\right)^{4}
Subtract \left(7x-2\right)^{4} from both sides.
28c=-\left(7x-2\right)^{4}+98x^{2}+28С-56x
The equation is in standard form.
\frac{28c}{28}=\frac{-\left(7x-2\right)^{4}+98x^{2}+28С-56x}{28}
Divide both sides by 28.
c=\frac{-\left(7x-2\right)^{4}+98x^{2}+28С-56x}{28}
Dividing by 28 undoes the multiplication by 28.
c=-\frac{\left(7x-2\right)^{4}}{28}+\frac{7x^{2}}{2}-2x+С
Divide 98x^{2}-56x+28С-\left(7x-2\right)^{4} by 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}