Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}\left(x^{2}+y^{2}\right)^{3}\mathrm{d}xA_{8}
Find the integral of \int x^{2}\left(x^{2}+y^{2}\right)^{3}\mathrm{d}x using the table of common integrals rule \int a\mathrm{d}A_{8}=aA_{8}.
\left(\frac{y^{6}x^{3}}{3}+\frac{3y^{4}x^{5}}{5}+\frac{3y^{2}x^{7}}{7}+\frac{x^{9}}{9}+С\right)A_{8}
Simplify.
\left(\frac{y^{6}x^{3}}{3}+\frac{3y^{4}x^{5}}{5}+\frac{3y^{2}x^{7}}{7}+\frac{x^{9}}{9}+С\right)A_{8}+С
If F\left(A_{8}\right) is an antiderivative of f\left(A_{8}\right), then the set of all antiderivatives of f\left(A_{8}\right) is given by F\left(A_{8}\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.