Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x}{\frac{9}{3x}}\mathrm{d}x
Combine 3x and -2x to get x.
\int \frac{x\times 3x}{9}\mathrm{d}x
Divide x by \frac{9}{3x} by multiplying x by the reciprocal of \frac{9}{3x}.
\int \frac{x^{2}\times 3}{9}\mathrm{d}x
Multiply x and x to get x^{2}.
\int x^{2}\times \frac{1}{3}\mathrm{d}x
Divide x^{2}\times 3 by 9 to get x^{2}\times \frac{1}{3}.
\frac{\int x^{2}\mathrm{d}x}{3}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{x^{3}}{9}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{9}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.