Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int \frac{1}{x\times 3}x^{2}\mathrm{d}x
Multiply \frac{1}{x} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\int \frac{x^{2}}{x\times 3}\mathrm{d}x
Express \frac{1}{x\times 3}x^{2} as a single fraction.
\int \frac{x}{3}\mathrm{d}x
Cancel out x in both numerator and denominator.
\frac{\int x\mathrm{d}x}{3}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{x^{2}}{6}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{6}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.