Evaluate
-\frac{1}{3x^{3}}+\frac{1}{5x^{5}}+С
Differentiate w.r.t. x
\frac{x^{2}-1}{x^{6}}
Quiz
Integration
5 problems similar to:
\int{ \frac{ 1 }{ { x }^{ 4 } } - \frac{ 1 }{ { x }^{ 6 } } }d x
Share
Copied to clipboard
\int \frac{1}{x^{4}}\mathrm{d}x+\int -\frac{1}{x^{6}}\mathrm{d}x
Integrate the sum term by term.
\int \frac{1}{x^{4}}\mathrm{d}x-\int \frac{1}{x^{6}}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{1}{3x^{3}}-\int \frac{1}{x^{6}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{4}}\mathrm{d}x with -\frac{1}{3x^{3}}.
-\frac{1}{3x^{3}}+\frac{1}{5x^{5}}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{6}}\mathrm{d}x with -\frac{1}{5x^{5}}. Multiply -1 times -\frac{1}{5x^{5}}.
-\frac{1}{3x^{3}}+\frac{1}{5x^{5}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}