Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\left(x+4\right)\left(x^{2}-4x+16\right)}{x+4}\mathrm{d}x
Factor the expressions that are not already factored in \frac{x^{3}+64}{x+4}.
\int x^{2}-4x+16\mathrm{d}x
Cancel out x+4 in both numerator and denominator.
\int x^{2}\mathrm{d}x+\int -4x\mathrm{d}x+\int 16\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x+\int 16\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-4\int x\mathrm{d}x+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-2x^{2}+\int 16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}-2x^{2}+16x
Find the integral of 16 using the table of common integrals rule \int a\mathrm{d}x=ax.
16x-2x^{2}+\frac{x^{3}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.