Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\int y\mathrm{d}x=e^{x}a\cos(x)+e^{x}b\sin(x)
Use the distributive property to multiply e^{x} by a\cos(x)+b\sin(x).
e^{x}a\cos(x)+e^{x}b\sin(x)=\int y\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
e^{x}a\cos(x)=\int y\mathrm{d}x-e^{x}b\sin(x)
Subtract e^{x}b\sin(x) from both sides.
\cos(x)e^{x}a=-b\sin(x)e^{x}+xy+С
The equation is in standard form.
\frac{\cos(x)e^{x}a}{\cos(x)e^{x}}=\frac{-b\sin(x)e^{x}+xy+С}{\cos(x)e^{x}}
Divide both sides by e^{x}\cos(x).
a=\frac{-b\sin(x)e^{x}+xy+С}{\cos(x)e^{x}}
Dividing by e^{x}\cos(x) undoes the multiplication by e^{x}\cos(x).
a=\frac{\frac{xy+С}{e^{x}}-b\sin(x)}{\cos(x)}
Divide yx+С-e^{x}b\sin(x) by e^{x}\cos(x).
\int y\mathrm{d}x=e^{x}a\cos(x)+e^{x}b\sin(x)
Use the distributive property to multiply e^{x} by a\cos(x)+b\sin(x).
e^{x}a\cos(x)+e^{x}b\sin(x)=\int y\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
e^{x}b\sin(x)=\int y\mathrm{d}x-e^{x}a\cos(x)
Subtract e^{x}a\cos(x) from both sides.
\sin(x)e^{x}b=-a\cos(x)e^{x}+xy+С
The equation is in standard form.
\frac{\sin(x)e^{x}b}{\sin(x)e^{x}}=\frac{-a\cos(x)e^{x}+xy+С}{\sin(x)e^{x}}
Divide both sides by e^{x}\sin(x).
b=\frac{-a\cos(x)e^{x}+xy+С}{\sin(x)e^{x}}
Dividing by e^{x}\sin(x) undoes the multiplication by e^{x}\sin(x).
b=\frac{\frac{xy+С}{e^{x}}-a\cos(x)}{\sin(x)}
Divide yx+С-e^{x}a\cos(x) by e^{x}\sin(x).