Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{8}+7x^{7}\mathrm{d}x
Use the distributive property to multiply x^{7} by 2x+7.
\int 2x^{8}\mathrm{d}x+\int 7x^{7}\mathrm{d}x
Integrate the sum term by term.
2\int x^{8}\mathrm{d}x+7\int x^{7}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{9}}{9}+7\int x^{7}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}. Multiply 2 times \frac{x^{9}}{9}.
\frac{2x^{9}}{9}+\frac{7x^{8}}{8}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}. Multiply 7 times \frac{x^{8}}{8}.
\frac{2x^{9}}{9}+\frac{7x^{8}}{8}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.