Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}\left(16\left(x^{2}\right)^{2}-24x^{2}+9\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x^{2}-3\right)^{2}.
\int x^{4}\left(16x^{4}-24x^{2}+9\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 16x^{8}-24x^{6}+9x^{4}\mathrm{d}x
Use the distributive property to multiply x^{4} by 16x^{4}-24x^{2}+9.
\int 16x^{8}\mathrm{d}x+\int -24x^{6}\mathrm{d}x+\int 9x^{4}\mathrm{d}x
Integrate the sum term by term.
16\int x^{8}\mathrm{d}x-24\int x^{6}\mathrm{d}x+9\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{16x^{9}}{9}-24\int x^{6}\mathrm{d}x+9\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}. Multiply 16 times \frac{x^{9}}{9}.
\frac{16x^{9}}{9}-\frac{24x^{7}}{7}+9\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply -24 times \frac{x^{7}}{7}.
\frac{16x^{9}}{9}-\frac{24x^{7}}{7}+\frac{9x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 9 times \frac{x^{5}}{5}.
\frac{9x^{5}}{5}-\frac{24x^{7}}{7}+\frac{16x^{9}}{9}
Simplify.
\frac{9x^{5}}{5}-\frac{24x^{7}}{7}+\frac{16x^{9}}{9}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.