Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}\left(4\left(x^{3}\right)^{2}+16x^{3}+16\right)\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x^{3}+4\right)^{2}.
\int x^{2}\left(4x^{6}+16x^{3}+16\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int 4x^{8}+16x^{5}+16x^{2}\mathrm{d}x
Use the distributive property to multiply x^{2} by 4x^{6}+16x^{3}+16.
\int 4x^{8}\mathrm{d}x+\int 16x^{5}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integrate the sum term by term.
4\int x^{8}\mathrm{d}x+16\int x^{5}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{9}}{9}+16\int x^{5}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}. Multiply 4 times \frac{x^{9}}{9}.
\frac{4x^{9}}{9}+\frac{8x^{6}}{3}+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 16 times \frac{x^{6}}{6}.
\frac{4x^{9}}{9}+\frac{8x^{6}}{3}+\frac{16x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 16 times \frac{x^{3}}{3}.
\frac{16x^{3}}{3}+\frac{8x^{6}}{3}+\frac{4x^{9}}{9}
Simplify.
\frac{16x^{3}}{3}+\frac{8x^{6}}{3}+\frac{4x^{9}}{9}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.