Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\int a^{2}+2x-3\mathrm{d}x
Evaluate the indefinite integral first.
\int a^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -3\mathrm{d}x
Integrate the sum term by term.
\int a^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -3\mathrm{d}x
Factor out the constant in each of the terms.
a^{2}x+2\int x\mathrm{d}x+\int -3\mathrm{d}x
Find the integral of a^{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
a^{2}x+x^{2}+\int -3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
a^{2}x+x^{2}-3x
Find the integral of -3 using the table of common integrals rule \int a\mathrm{d}x=ax.
a^{2}a+a^{2}-3a-\left(a^{2}t+t^{2}-3t\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\left(-3+a+a^{2}+t\right)\left(a-t\right)
Simplify.