Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}-4789x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -4789x^{4}\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-4789\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-4789\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{4789x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -4789 times \frac{x^{5}}{5}.
\frac{9^{3}}{3}-\frac{4789}{5}\times 9^{5}-\left(\frac{5^{3}}{3}-\frac{4789}{5}\times 5^{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{803457088}{15}
Simplify.