Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{4}^{9}\frac{1}{2}x^{2}-1\mathrm{d}x
Use the distributive property to multiply \frac{1}{2} by x^{2}-2.
\int \frac{x^{2}}{2}-1\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{x^{2}}{2}\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
\frac{\int x^{2}\mathrm{d}x}{2}+\int -1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{6}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply \frac{1}{2} times \frac{x^{3}}{3}.
\frac{x^{3}}{6}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{9^{3}}{6}-9-\left(\frac{4^{3}}{6}-4\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{635}{6}
Simplify.