Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}-4x+x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -4x\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-4\int x\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-2x^{2}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}-2x^{2}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{3}}{3}-\frac{3x^{2}}{2}
Simplify.
\frac{8^{3}}{3}-\frac{3}{2}\times 8^{2}-\left(\frac{4^{3}}{3}-\frac{3}{2}\times 4^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{232}{3}
Simplify.