Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}-12x+32\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -12x\mathrm{d}x+\int 32\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-12\int x\mathrm{d}x+\int 32\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-12\int x\mathrm{d}x+\int 32\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-6x^{2}+\int 32\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -12 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}-6x^{2}+32x
Find the integral of 32 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{8^{3}}{3}-6\times 8^{2}+32\times 8-\left(\frac{4^{3}}{3}-6\times 4^{2}+32\times 4\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{32}{3}
Simplify.