Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{5}{s^{2}}\mathrm{d}s
Evaluate the indefinite integral first.
5\int \frac{1}{s^{2}}\mathrm{d}s
Factor out the constant using \int af\left(s\right)\mathrm{d}s=a\int f\left(s\right)\mathrm{d}s.
-\frac{5}{s}
Since \int s^{k}\mathrm{d}s=\frac{s^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{s^{2}}\mathrm{d}s with -\frac{1}{s}.
-5\times 8^{-1}+5\times 4^{-1}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{5}{8}
Simplify.