Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{272}^{800}30+10.7\times \frac{1}{1000}T\mathrm{d}T
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\int _{272}^{800}30+\frac{107}{10000}T\mathrm{d}T
Multiply 10.7 and \frac{1}{1000} to get \frac{107}{10000}.
\int 30+\frac{107T}{10000}\mathrm{d}T
Evaluate the indefinite integral first.
\int 30\mathrm{d}T+\int \frac{107T}{10000}\mathrm{d}T
Integrate the sum term by term.
\int 30\mathrm{d}T+\frac{107\int T\mathrm{d}T}{10000}
Factor out the constant in each of the terms.
30T+\frac{107\int T\mathrm{d}T}{10000}
Find the integral of 30 using the table of common integrals rule \int a\mathrm{d}T=aT.
30T+\frac{107T^{2}}{20000}
Since \int T^{k}\mathrm{d}T=\frac{T^{k+1}}{k+1} for k\neq -1, replace \int T\mathrm{d}T with \frac{T^{2}}{2}. Multiply \frac{107}{10000} times \frac{T^{2}}{2}.
30\times 800+\frac{107}{20000}\times 800^{2}-\left(30\times 272+\frac{107}{20000}\times 272^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{11792616}{625}
Simplify.