Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{5}+3x\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x^{5}\mathrm{d}x+\int 3x\mathrm{d}x
Integrate the sum term by term.
2\int x^{5}\mathrm{d}x+3\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{6}}{3}+3\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 2 times \frac{x^{6}}{6}.
\frac{x^{6}}{3}+\frac{3x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
\frac{4^{6}}{3}+\frac{3}{2}\times 4^{2}-\left(\frac{2^{6}}{3}+\frac{3}{2}\times 2^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1362
Simplify.