Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 8x^{3}+3x^{2}+6x\mathrm{d}x
Evaluate the indefinite integral first.
\int 8x^{3}\mathrm{d}x+\int 3x^{2}\mathrm{d}x+\int 6x\mathrm{d}x
Integrate the sum term by term.
8\int x^{3}\mathrm{d}x+3\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x
Factor out the constant in each of the terms.
2x^{4}+3\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 8 times \frac{x^{4}}{4}.
2x^{4}+x^{3}+6\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
2x^{4}+x^{3}+3x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 6 times \frac{x^{2}}{2}.
2\times 3^{4}+3^{3}+3\times 3^{2}-\left(2\times 2^{4}+2^{3}+3\times 2^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
164
Simplify.