Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 6x^{2}-4x+7-\frac{1}{x^{2}}\mathrm{d}x
Evaluate the indefinite integral first.
\int 6x^{2}\mathrm{d}x+\int -4x\mathrm{d}x+\int 7\mathrm{d}x+\int -\frac{1}{x^{2}}\mathrm{d}x
Integrate the sum term by term.
6\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x+\int 7\mathrm{d}x-\int \frac{1}{x^{2}}\mathrm{d}x
Factor out the constant in each of the terms.
2x^{3}-4\int x\mathrm{d}x+\int 7\mathrm{d}x-\int \frac{1}{x^{2}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
2x^{3}-2x^{2}+\int 7\mathrm{d}x-\int \frac{1}{x^{2}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
2x^{3}-2x^{2}+7x-\int \frac{1}{x^{2}}\mathrm{d}x
Find the integral of 7 using the table of common integrals rule \int a\mathrm{d}x=ax.
2x^{3}-2x^{2}+7x+\frac{1}{x}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{2}}\mathrm{d}x with -\frac{1}{x}. Multiply -1 times -\frac{1}{x}.
2\times 3^{3}-2\times 3^{2}+7\times 3+3^{-1}-\left(2\times 2^{3}-2\times 2^{2}+7\times 2+2^{-1}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{209}{6}
Simplify.