Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -x^{2}+4x-3\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{2}\mathrm{d}x+\int 4x\mathrm{d}x+\int -3\mathrm{d}x
Integrate the sum term by term.
-\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x+\int -3\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{3}}{3}+4\int x\mathrm{d}x+\int -3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+2x^{2}+\int -3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
-\frac{x^{3}}{3}+2x^{2}-3x
Find the integral of -3 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{3^{3}}{3}+2\times 3^{2}-3\times 3-\left(-\frac{2^{3}}{3}+2\times 2^{2}-3\times 2\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{2}{3}
Simplify.