Evaluate
11842.25
Share
Copied to clipboard
\int 25+18x\mathrm{d}x
Evaluate the indefinite integral first.
\int 25\mathrm{d}x+\int 18x\mathrm{d}x
Integrate the sum term by term.
\int 25\mathrm{d}x+18\int x\mathrm{d}x
Factor out the constant in each of the terms.
25x+18\int x\mathrm{d}x
Find the integral of 25 using the table of common integrals rule \int a\mathrm{d}x=ax.
25x+9x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 18 times \frac{x^{2}}{2}.
25\times 35+9\times 35^{2}-\left(25\times 1.5+9\times 1.5^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
11842.25
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}