Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{8x}\mathrm{d}x
Evaluate the indefinite integral first.
\sqrt{8}\int \sqrt{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\sqrt{8}\times \frac{2x^{\frac{3}{2}}}{3}
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{4\sqrt{2}x^{\frac{3}{2}}}{3}
Simplify.
\frac{4}{3}\times 2^{\frac{1}{2}}a^{\frac{3}{2}}-\frac{4}{3}\times 2^{\frac{1}{2}}\times 1^{\frac{3}{2}}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{2\times \left(2a\right)^{\frac{3}{2}}-4\sqrt{2}}{3}
Simplify.