Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 5x^{2}+6x+10\mathrm{d}x
Evaluate the indefinite integral first.
\int 5x^{2}\mathrm{d}x+\int 6x\mathrm{d}x+\int 10\mathrm{d}x
Integrate the sum term by term.
5\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x+\int 10\mathrm{d}x
Factor out the constant in each of the terms.
\frac{5x^{3}}{3}+6\int x\mathrm{d}x+\int 10\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 5 times \frac{x^{3}}{3}.
\frac{5x^{3}}{3}+3x^{2}+\int 10\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 6 times \frac{x^{2}}{2}.
\frac{5x^{3}}{3}+3x^{2}+10x
Find the integral of 10 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5}{3}\times 6^{3}+3\times 6^{2}+10\times 6-\left(\frac{5}{3}\times 1^{3}+3\times 1^{2}+10\times 1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1540}{3}
Simplify.