Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. t
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1}{\sqrt{t}\left(\sqrt{t}+1\right)^{3}}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{x}{\sqrt{t}\left(\sqrt{t}+1\right)^{3}}
Find the integral of \frac{1}{\sqrt{t}\left(\sqrt{t}+1\right)^{3}} using the table of common integrals rule \int a\mathrm{d}x=ax.
t^{-\frac{1}{2}}\left(t^{\frac{1}{2}}+1\right)^{-3}\times 4-t^{-\frac{1}{2}}\left(t^{\frac{1}{2}}+1\right)^{-3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3}{\sqrt{t}\left(\sqrt{t}+1\right)^{3}}
Simplify.