Solve for a
a=8
x\neq 0
Share
Copied to clipboard
a\int _{1}^{2}x^{2}+\frac{1}{x^{4}}\mathrm{d}x=21
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
a\int _{1}^{2}\frac{x^{2}x^{4}}{x^{4}}+\frac{1}{x^{4}}\mathrm{d}x=21
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{x^{4}}{x^{4}}.
a\int _{1}^{2}\frac{x^{2}x^{4}+1}{x^{4}}\mathrm{d}x=21
Since \frac{x^{2}x^{4}}{x^{4}} and \frac{1}{x^{4}} have the same denominator, add them by adding their numerators.
a\int _{1}^{2}\frac{x^{6}+1}{x^{4}}\mathrm{d}x=21
Do the multiplications in x^{2}x^{4}+1.
\frac{21}{8}a=21
The equation is in standard form.
\frac{\frac{21}{8}a}{\frac{21}{8}}=\frac{21}{\frac{21}{8}}
Divide both sides of the equation by \frac{21}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{21}{\frac{21}{8}}
Dividing by \frac{21}{8} undoes the multiplication by \frac{21}{8}.
a=8
Divide 21 by \frac{21}{8} by multiplying 21 by the reciprocal of \frac{21}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}