Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{264x+192x^{2}}{5}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{264x}{5}\mathrm{d}x+\int \frac{192x^{2}}{5}\mathrm{d}x
Integrate the sum term by term.
\frac{264\int x\mathrm{d}x+192\int x^{2}\mathrm{d}x}{5}
Factor out the constant in each of the terms.
\frac{132x^{2}+192\int x^{2}\mathrm{d}x}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 52.8 times \frac{x^{2}}{2}.
\frac{132x^{2}+64x^{3}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 38.4 times \frac{x^{3}}{3}.
\frac{132}{5}\times 1^{2}+\frac{64}{5}\times 1^{3}-\left(\frac{132}{5}\times 0.5^{2}+\frac{64}{5}\times 0.5^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
31
Simplify.