Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{x}t^{2}f\mathrm{d}t
Multiply t and t to get t^{2}.
\int t^{2}f\mathrm{d}t
Evaluate the indefinite integral first.
f\int t^{2}\mathrm{d}t
Factor out the constant using \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
f\times \frac{t^{3}}{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}.
\frac{ft^{3}}{3}
Simplify.
\frac{1}{3}fx^{3}-\frac{1}{3}f\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{fx^{3}}{3}
Simplify.