Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int -6t-4t^{3}\mathrm{d}t
Evaluate the indefinite integral first.
\int -6t\mathrm{d}t+\int -4t^{3}\mathrm{d}t
Integrate the sum term by term.
-6\int t\mathrm{d}t-4\int t^{3}\mathrm{d}t
Factor out the constant in each of the terms.
-3t^{2}-4\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -6 times \frac{t^{2}}{2}.
-3t^{2}-t^{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply -4 times \frac{t^{4}}{4}.
-3x^{2}-x^{4}-\left(-3\times 0^{2}-0^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\left(3+x^{2}\right)x^{2}
Simplify.