Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. L
Tick mark Image

Similar Problems from Web Search

Share

\int -10x^{2}-\frac{5x^{4}}{9}\mathrm{d}x
Evaluate the indefinite integral first.
\int -10x^{2}\mathrm{d}x+\int -\frac{5x^{4}}{9}\mathrm{d}x
Integrate the sum term by term.
-10\int x^{2}\mathrm{d}x-\frac{5\int x^{4}\mathrm{d}x}{9}
Factor out the constant in each of the terms.
-\frac{10x^{3}}{3}-\frac{5\int x^{4}\mathrm{d}x}{9}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -10 times \frac{x^{3}}{3}.
-\frac{10x^{3}}{3}-\frac{x^{5}}{9}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -\frac{5}{9} times \frac{x^{5}}{5}.
-\frac{10}{3}L^{3}-\frac{L^{5}}{9}-\left(-\frac{10}{3}\times 0^{3}-\frac{0^{5}}{9}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{10L^{3}}{3}-\frac{L^{5}}{9}
Simplify.