Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \left(\sqrt{6}x-x\right)^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\left(\sqrt{6}-1\right)^{2}\int x^{2}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\left(\sqrt{6}-1\right)^{2}\times \frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{\left(7-2\sqrt{6}\right)x^{3}}{3}
Simplify.
\frac{1}{3}\left(7-2\times 6^{\frac{1}{2}}\right)\times 6^{3}-\frac{1}{3}\left(7-2\times 6^{\frac{1}{2}}\right)\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
504-144\sqrt{6}
Simplify.